Comments by Rafael Repullo on

Risk-taking and Joint Liquidity and Capital Regulation

Demian Macedo and Sergio Vicente

MadBar Workshop on Banking and Corporate Finance UC3M, 30 September 2016

Purpose of paper

- Moral hazard model of a single bank
 - \rightarrow Bank chooses capital, liquidity, and risk
 - \rightarrow Choice of risk is not observed by regulator
 - \rightarrow Depends on capital and liquidity
- Social welfare maximizer regulator
 - \rightarrow Can set minimum capital and liquidity requirements
 - \rightarrow Characterize second-best optimal requirements

Setup

- Limited liability bank chooses capital, liquidity, and risk at t = 0
 - \rightarrow Subject to capital and liquidity requirements
 - \rightarrow Insured deposits
 - \rightarrow Costly capital (more than deposits)
 - \rightarrow Costly liquidity (lower return than risky asset)
- Stochastic deposits withdrawals at t = 1

 \rightarrow Bank is closed if liquidity does not cover withdrawals

Main results

• Capital and liquidity requirements should be set jointly

 \rightarrow Unlike in the silo approach of Basel III

- Optimal capital and liquidity requirements depend on
 - \rightarrow Cost of capital and opportunity cost of liquidity
 - \rightarrow Unlike in the statistical/quantitative approach of Basel III
- Differences between capital and liquidity requirements
 - → Capital requirements always ameliorate risk-taking
 - \rightarrow Liquidity requirements may or may not do so

Main comments

- Paper is too long and unnecessarily convoluted
 - \rightarrow Sequential approach to solving maximization problem
 - \rightarrow Why not do it simultaneously?
- Paper considers exogenous deposit withdrawals
 - \rightarrow Appropriate given deposit insurance
 - \rightarrow But not if (part of) the bank's funding is uninsured
- Lender of last resort (LoLR) should be at the core of the paper → Do we need liquidity requirements when there is a LoLR?

What am I going to do?

- Consider a simple version of the model
- Derive three sets of results
 - \rightarrow No regulation (laissez faire)
 - \rightarrow Optimal regulation without moral hazard
 - \rightarrow Optimal regulation with moral hazard
- Briefly comment on related work on joint regulation

 \rightarrow Rochet and Vives (2004) and König (2015)

Part 1

A simple version of the model

Model setup

- Three dates (t = 0, 1, 2)
- Balance sheet of the bank at t = 0

Liquidity	\rightarrow	l	d	\leftarrow Demand deposits
Risky asset	\rightarrow	1 - l	b	\leftarrow Other deposits
			k	← Capital

Bank's liabilities

• Fixed demand deposits *d*

 \rightarrow Interest rate normalized to zero

 \rightarrow Amount β withdrawn at t = 1

 \rightarrow Assume uniform distribution in [0,*d*]

• Variable other deposits *b*

 \rightarrow Interest rate assumed to be zero

• Variable capital k (such that k + b = 1 - d)

 \rightarrow Cost of capital $\rho > 0$

Bank's assets

• Safe asset (liquidity)

 \rightarrow Interest rate assumed to be zero

• Risky asset

 $1 \xrightarrow{\int} \begin{cases} M, \text{ with probability } \theta \\ 0, \text{ with probability } 1 - \theta \\ 0 \end{cases}$

 \rightarrow Success probability chosen by bank at t = 0 at a cost

$$c(\theta) = \frac{c}{2}\theta^2$$

Bank's objective function

- Two possible cases
 - \rightarrow If $\beta > l$ bank is closed and shareholders get zero
 - \rightarrow If $\beta \leq l$ bank is not closed and shareholders get

$$M(1-l) + (l - \beta) - (1 - k - \beta)$$

= $M(1-l) + l - (1-k)$, with prob. θ

• Bank expected payoff

$$\pi(k,l,\theta) = \left[M(1-l) + l - (1-k) \right] \theta F(l) - \frac{c}{2} \theta^2 - (1+\rho)k$$

Laissez faire

• First-order conditions

$$\frac{\partial \pi}{\partial k} = \theta F(l) - (1+\rho) < 0 \quad \rightarrow \quad k^{LF} = 0$$
$$\frac{\partial \pi}{\partial l} = 0 \quad \rightarrow \quad l^{LF} = \frac{M-1+k}{2(M-1)} = \frac{1}{2}$$
$$\frac{\partial \pi}{\partial \theta} = 0 \quad \rightarrow \quad \theta^{LF} = \frac{[(M-1)(1-l)+k]F(l)}{c} = \frac{M-1}{4cd}$$

Social planner's objective function

• Social planner's expected payoff

$$\omega(k,l,\theta) = M(1-l)\theta F(l) + l - (1-k) - \frac{c}{2}\theta^2 - (1+\rho)k$$

• Two cases

 → First-best: Regulator chooses capital, liquidity, and risk
 → Second-best: Regulator chooses capital and liquidity + Bank chooses risk

First-best

• First-order conditions

$$\frac{\partial \omega}{\partial k} = -\rho < 0 \quad \rightarrow \quad k^{FB} = 0$$

$$\frac{\partial \omega}{\partial l} = 0 \quad \rightarrow \quad l^{FB} = \frac{1}{2} + \frac{d}{2M\theta}$$

$$\frac{\partial \omega}{\partial \theta} = 0 \quad \rightarrow \quad \theta^{FB} = \frac{M(1-l)l}{cd}$$

Comparison of first-best with laissez faire

• Numerical example: Let M = 2, c = 2/3, and d = 3/4

$$\rightarrow k^{LF} = k^{FB} = 0$$

$$\rightarrow l^{LF} = 0.50 < 0.75 = l^{FB}$$

$$\rightarrow \theta^{LF} = 0.50 < 0.75 = \theta^{FB}$$

• First-best also has zero capital

 \rightarrow Capital is costly and is not needed to provide incentives

• First-best has more liquidity and less risk than laissez faire

Second-best: bank's choice of risk

• First-order condition

$$\frac{\partial \pi}{\partial \theta} = 0 \quad \rightarrow \quad \theta = \theta(k,l) = \frac{[(M-1)(1-l)+k]l}{cd}$$

• Notice that

$$\frac{\partial \theta}{\partial k} > 0$$

→ Capital requirements always ameliorate risk-taking

$$\frac{\partial \theta}{\partial l} > 0$$
 if and only if $l < \frac{M-1+k}{2(M-1)}$

 \rightarrow Liquidity requirements when they are not too large

Second best

• Social planner's problem

$$\max_{k,l} \omega(k,l,\theta)$$
 subject to $\theta = \theta(k,l)$

 \rightarrow First-order conditions

$$\frac{\partial \omega}{\partial k} = -\rho + \left(\frac{M(1-l)l}{d} - c\theta\right)\frac{\partial \theta}{\partial k} = 0$$
$$\frac{\partial \omega}{\partial l} = \frac{M(1-2l)\theta}{d} + 1 + \left(\frac{M(1-l)l}{d} - c\theta\right)\frac{\partial \theta}{\partial l} = 0$$

 \rightarrow Be careful with corner solutions!

Comparison of second-best with laissez faire

• Numerical example: Let M = 2, c = 2/3, d = 3/4, and $\rho = 0.1$

$$\rightarrow k^{LF} = 0 < 0.18 = k^{SB}$$

$$\rightarrow l^{LF} = 0.50 < 0.75 = l^{SB}$$

$$\rightarrow \theta^{LF} = 0.50 < 0.65 = \theta^{SB}$$

- Second-best has positive level of capital
 - \rightarrow To ameliorate risk-taking incentives
- Second-best has more liquidity and less risk than laissez faire

Comments on extensions

• Possible liquidation of risky asset at t = 1 at fire sale discount

 \rightarrow Interesting, but note that discount is exogenous

- Possible interbank market at t = 1
 - \rightarrow Interesting, but need to think about withdrawals
 - \rightarrow Are they driven by idiosyncratic or aggregate shocks?
- Possible information-based withdrawals

 \rightarrow May need a completely different setup

Part 2

Related work on joint regulation

Introduction

- Change of focus
 - \rightarrow From retail deposits to (informed) wholesale investors
 - \rightarrow From stochastic withdrawals to information-based runs
- Change of modeling approach
 - \rightarrow Global games

Model setup (i)

- Three dates (t = 0, 1, 2)
- Continuum of risk-neutral investors
 - \rightarrow Invest *D* in the bank at t = 0
 - \rightarrow May withdraw DR_D at t = 1 or t = 2, with $R_D > 1$
 - \rightarrow Investor *i* observes signal $s_i = R + \varepsilon_i$

 $R \sim N(\overline{R}, 1/\alpha)$ is return of bank's risky asset

 $\varepsilon_i \sim N(0, 1/\beta)$ is an iid noise term independent of R

Model setup (ii)

• Balance sheet of the bank at t = 0

Risky assets
$$\rightarrow$$
 A D \leftarrow Wholesale depositsReserves (cash) \rightarrow $C = \phi D$ $K = \gamma A$ \leftarrow Capital

where ϕ is a liquidity requirement and γ is a capital requirement

• By balance sheet identity we have

$$(1-\gamma)A = (1-\phi)D \rightarrow A = \frac{1-\phi}{1-\gamma}$$
 (normalizing $D = 1$)

Deposit withdrawals

- Let *x* denote the proportion of deposits withdrawn at t = 1
- If $xR_D \le \phi$ (withdrawals smaller than cash available)
 - \rightarrow Bank does not have to liquidate risky asset

 \rightarrow In this case the bank fails if

$$RA + \underbrace{(\phi - xR_D)}_{\uparrow} < (1 - x)R_D$$

Cash remaining until t = 2

Liquidation costs

- If $xR_D > \phi$ (withdrawals greater than cash available)
 - \rightarrow Bank sells risky asset at price $R / (1 + \lambda)$, with $\lambda > 0$
 - \rightarrow In this case the bank fails if

$$R\left[A - \frac{xR_D - \phi}{R/(1+\lambda)}\right] < (1-x)R_D$$

Assets sold at t = 1

Bank failure

• Putting together the two previous conditions yields

$$R < \frac{1-\gamma}{1-\phi} \left[R_D - \phi + \lambda \max\left\{ x R_D - \phi, 0 \right\} \right] = R^*$$

where R^* is the bankruptcy point

Investors' withdrawal decisions (i)

• Let $p(s_i, x)$ denote probability of bank failure conditional on

 \rightarrow Signal s_i of investor i

- \rightarrow Withdrawal decisions of all other investors described by x
- Simple behavioral rule for investor *i*

Withdraw when $p(s_i, x) > \hat{p}$

 $\rightarrow \hat{p}$ is an exogenous parameter

 \rightarrow Could be rationalized in terms of delegation to managers

Investors' withdrawal decisions (ii)

• Clearly $p(s_i, x)$ should be decreasing in signal $s_i = R + \varepsilon_i$

 \rightarrow Suppose that all investors follow a threshold strategy

Withdraw when $s_i < s^*$

• Threshold s^* is determined jointly with bankruptcy point R^*

Equilibrium

Proposition: When the precision β of the investors' signal is large, there is a unique equilibrium characterized by solution to

- \rightarrow Investor's indifference condition
- \rightarrow Bankruptcy point

Comparative statics

• Effect of capital requirements

 \rightarrow An increase in γ always reduces R^*

- \rightarrow Makes the bank safer
- Effect of liquidity requirements
 - \rightarrow An increase in ϕ reduces R^* when $R^* < 2(1 \gamma)$
 - \rightarrow Only when the bank is sufficiently safe
 - \rightarrow In the case of risky banks, they become riskier

Discussion

- Liquidity requirements as a double-edged sword (König, 2015)
- Two effects
 - \rightarrow *Liquidity effect*: larger buffer to withstand shocks
 - → *Solvency effect*: lower asset returns

References

• König, P. (2015), "Liquidity Requirements: A Double-Edged Sword," *International Journal of Central Banking*.

• Rochet, J.-C., and X. Vives (2004), "Coordination Failures and the Lender of Last Resort," *Journal of the European Economic Association*.