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Purpose of paper

• Moral hazard model of a single bank

→ Bank chooses capital, liquidity, and risk

→ Choice of risk is not observed by regulator

→ Depends on capital and liquidity

• Social welfare maximizer regulator

→ Can set minimum capital and liquidity requirements

→ Characterize second-best optimal requirements



Setup

• Limited liability bank chooses capital, liquidity, and risk at t = 0

→ Subject to capital and liquidity requirements

→ Insured deposits

→ Costly capital (more than deposits)

→ Costly liquidity (lower return than risky asset)

• Stochastic deposits withdrawals at t = 1

→ Bank is closed if liquidity does not cover withdrawals



Main results

• Capital and liquidity requirements should be set jointly

→ Unlike in the silo approach of Basel III

• Optimal capital and liquidity requirements depend on

→ Cost of capital and opportunity cost of liquidity

→ Unlike in the statistical/quantitative approach of Basel III

• Differences between capital and liquidity requirements

→ Capital requirements always ameliorate risk-taking

→ Liquidity requirements may or may not do so



Main comments

• Paper is too long and unnecessarily convoluted

→ Sequential approach to solving maximization problem

→ Why not do it simultaneously?

• Paper considers exogenous deposit withdrawals

→Appropriate given deposit insurance

→ But not if (part of) the bank’s funding is uninsured

• Lender of last resort (LoLR) should be at the core of the paper

→ Do we need liquidity requirements when there is a LoLR?



What am I going to do?

• Consider a simple version of the model

• Derive three sets of results

→ No regulation (laissez faire)

→ Optimal regulation without moral hazard

→ Optimal regulation with moral hazard

• Briefly comment on related work on joint regulation

→ Rochet and Vives (2004) and König (2015)



Part 1

A simple version of the model



Model setup

• Three dates (t = 0, 1,2)

• Balance sheet of the bank at t = 0
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Bank’s liabilities

• Fixed demand deposits d

→ Interest rate normalized to zero

→Amount β withdrawn at t = 1

→Assume uniform distribution in [0,d]

• Variable other deposits b

→ Interest rate assumed to be zero

• Variable capital k (such that k + b = 1 ‒ d)

→ Cost of capital ρ > 0



Bank’s assets

• Safe asset (liquidity)

→ Interest rate assumed to be zero

• Risky asset

→ Success probability chosen by bank at t = 0 at a cost

,  with probability 
1                                     

0,  with probability 1
                  0 

M θ
θ

⎧
⎨ −⎩

2( )
2
cc θ θ=



Bank’s objective function

• Two possible cases

→ If           bank is closed and shareholders get zero

→ If           bank is not closed and shareholders get

• Bank expected payoff
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Laissez faire

• First-order conditions
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Social planner’s objective function

• Social planner’s expected payoff

• Two cases

→ First-best: Regulator chooses capital, liquidity, and risk 

→ Second-best: Regulator chooses capital and liquidity +

Bank chooses risk 
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First-best

• First-order conditions
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Comparison of first-best with laissez faire

• Numerical example: Let M = 2, c = 2/3, and d = 3/4

→

→

→

• First-best also has zero capital

→ Capital is costly and is not needed to provide incentives

• First-best has more liquidity and less risk than laissez faire
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Second-best: bank’s choice of risk

• First-order condition

• Notice that 

→ Capital requirements always ameliorate risk-taking

→ Liquidity requirements when they are not too large
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Second best

• Social planner’s problem

→ First-order conditions

→ Be careful with corner solutions!
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Comparison of second-best with laissez faire

• Numerical example: Let M = 2, c = 2/3, d = 3/4, and ρ = 0.1

→

→

→

• Second-best has positive level of capital

→ To ameliorate risk-taking incentives  

• Second-best has more liquidity and less risk than laissez faire
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Comments on extensions

• Possible liquidation of risky asset at t = 1 at fire sale discount

→ Interesting, but note that discount is exogenous

• Possible interbank market at t = 1

→ Interesting, but need to think about withdrawals

→Are they driven by idiosyncratic or aggregate shocks?

• Possible information-based withdrawals 

→ May need a completely different setup



Part 2

Related work on joint regulation



Introduction

• Change of focus

→ From retail deposits to (informed) wholesale investors

→ From stochastic withdrawals to information-based runs

• Change of modeling approach

→ Global games



Model setup (i)

• Three dates (t = 0, 1, 2)

• Continuum of risk-neutral investors

→ Invest  D in the bank at t = 0 

→ May withdraw  DRD at t = 1 or t = 2, with RD > 1

→ Investor i observes signal 

is return of bank’s risky asset

is an iid noise term independent of  R

i is R ε= +
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Model setup (ii)

• Balance sheet of the bank at t = 0

where    is a liquidity requirement and    is a capital requirement

• By balance sheet identity we have  
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Deposit withdrawals

• Let x denote the proportion of deposits withdrawn at t = 1 

• If                (withdrawals smaller than cash available)

→ Bank does not have to liquidate risky asset

→ In this case the bank fails if 
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Liquidation costs

• If                (withdrawals greater than cash available)

→ Bank sells risky asset at price 

→ In this case the bank fails if 
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Bank failure

• Putting together the two previous conditions yields

where R* is the bankruptcy point
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• Let               denote probability of bank failure conditional on

→ Signal si of investor i

→ Withdrawal decisions of all other investors described by x

• Simple behavioral rule for investor i

→ is an exogenous parameter

→ Could be rationalized in terms of delegation to managers

Investors’ withdrawal decisions (i)

ˆWithdraw when ( , )ip s x p>

( , )ip s x

p̂



• Clearly              should be decreasing in signal 

→ Suppose that all investors follow a threshold strategy

• Threshold s* is determined jointly with bankruptcy point R*

Investors’ withdrawal decisions (ii)

*Withdraw when is s<

( , )ip s x i is R ε= +



Proposition: When the precision β of the investors’ signal is 

large, there is a unique equilibrium characterized by solution to

→ Investor’s indifference condition

→ Bankruptcy point

Equilibrium



Comparative statics

• Effect of capital requirements

→An increase in    always reduces R*

→ Makes the bank safer

• Effect of liquidity requirements

→An increase in    reduces R* when 

→ Only when the bank is sufficiently safe

→ In the case of risky banks, they become riskier

* 2(1 )R γ< −

γ

φ



Discussion

• Liquidity requirements as a double-edged sword (König, 2015)

• Two effects

→ Liquidity effect: larger buffer to withstand shocks

→ Solvency effect: lower asset returns
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